Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE-90

COURSE PLAN

Academic Year 2019-20

Program:	B E – Civil Engineering
Semester :	7
Course Code:	15CV71
Course Title:	Municipal and industrial waste water treatment Engineering
Credit / L-T-P:	3\(3:0:0)
Total Contact Hours:	50
Course Plan Author:	PRIYANKASHI K N

Academic Evaluation and Monitoring Cell

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bangalore-560090 PH-080-23821488/23821315 www.Skit.org, Email: skitprinci1@gmail.com

Table of Contents

15CV71 : Municipal and Industrial waste water Engineering	3
A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	
3. Course Material	4
4. Course Prerequisites	4
B. OBE PARAMETERS	4
1. Course Outcomes	4
2. Course Applications	
3. Articulation Matrix	
4. Mapping Justification	
5. Curricular Gap and Content	
C. COURSE ASSESSMENT	6
1. Course Coverage	6
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	
E1. CIA EXAM – 1	•
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module – 3	
Module – 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment – 2	13
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	21

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

COURSE PLAN - CAY 2019-20 15CV71 : Municipal and Industrial waste water Engineering

A. COURSE INFORMATION

1. Course Overview

Degree:	Civil Engineering	Program:	B.E
Year / Semester :	2019/VII	Academic Year:	2018-19
Course Title:	Municipal and Industrial Waste Water Engineering	Course Code:	15CV71
Credit / L-T-P:	04	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	80 Marks
CIA Marks:	20 Marks	Assignment	1 / Module
Course Plan Author:	PRIYANKASHRI K N	Sign	Dt:
Checked By:	SHIVAPRASAD D G	Sign	Dt:
CO Targets	CIA Target : 80 %	SEE Target:	79 %

2. Course Content

Mod	Module Content	Teaching	Module	Blooms
ule		Hours	Concepts	Level
1	Introduction, need for sanitation, methods of sewage disposal, types of sewerage systems, dry weather flow, wet weather flow, factors effecting dry and wet weather flow on design of sewerage system, estimation of storm flow, time of concentration flow, material of sewers, shape of sewers, laying and testing of sewers, ventilation of sewers. low-cost waste treatment; oxidation pond, septic tank, Sewer appurtenances, manholes, catch basins, basic principles of house drainage, typical layout plan showing house drainage connections	10	Design of sewerage systems . sewer appurtenance s	L5
2	Design of sewers, hydraulic formula for velocity, effects of variation on velocity, regime velocity, design of hydraulic elements for circular sewers for full flow and partial flow conditions, disposal of effluents by dilution, self purification phenomenon, oxygen sag curve, zones of purification, sewage farming, sewage sickness, numerical problems on disposal of effluents, Streeter-Phelps equation		Design of different unit operations	L3
3	Waste water characteristics, sampling, significance and techniques, physical, chemical and biological characteristics, flow diagram for municipal waste water treatment, unit operations; screens, grit chambers, skimming tanks, equalization tanks Suspended growth and fixed film bio process, design of trickling filters, activated sludge process, sequential batch reactors, moving bed bio reactors, sludge digesters		Waste water characteristics	-
	Difference between domestic and industrial waste water, effect of effluent discharge on streams, methods of industrial waste water treatment; volume reduction, strength reduction, neutralization, equalisation and proportioning. Removal of organic, inorganic and colloidal solids, combined treatment methods;merits, demerits and feasibility, principles of discharge of raw, partially treated and completely treated wastes in to streams		conventional and biological treatment process	L2
5	Process flow chart, sources and characteristics of industrial waste water, treatment methods, reuse and recovery and disposal; cotton and textile industry, tanning industry, cane sugar and distilleries, dairy industry, steel and cement industry, paper and pulp industry, pharmaceutical and food processing industry		Industrial effluent treatment process	L3

3. Course Material

Mod	Details	Available
ule		
1	Text books	
	K. Subramanya, "Engineering Hydrology".Metcalf and Eddy, "Wastewater Engineering - Collection, Treatment, Disposal and Reuse", McGraw Hill Pub.Co., 2009.	In Lib
b)	Jayarami Reddy, "A Text Book of Hydrology".Nelson Leonard Nemerow, "Industrial Waste Treatment", Butterworth-Heinemann, 2007	
2	Reference books	
	H.M. Raghunath, "Hydrology"Manual on Waste Water Treatment : CPHEEO, Ministry of Urban Development, New Delhi	In dept
b)	Sharma R.K., "Irrigation Engineering and Hydraulics".Fair, Geyer and Okun , "Water and Wastewater Engineering" Vol-II, John Willey Publishers, New York	
3	Others (Web, Video, Simulation, Notes etc.)	Not Available

4. Course Prerequisites

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	15CV71	Municipal and	-	7	-	
		Industrial Waste				
		Water				
		Engineering				
	-	-		-	Plan Gap Course	
					I	
<u> </u>						
<u> </u>	16	·				·

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	COs	Teach.	Concept	Instr	Assessmen	Blooms'
		Hours		Method	t Method	Level
C01	Student should be able understand	05	Drainage	Lecture	Slip Test	L2
	Drainage connection		connection			Understand
CO.2	Student should be able to understand	05	Drainage	Lecture	Assignment	L2
	sewerage network		connection			
co3	Student should be able to understand	05	biological	Lecture	Assignment	L4
	conventional and biological treatment		treatment		and Slip	Analyze
	process		process		Test	
CO4	Student should be able design	05	unit	Lecture /	Assignment	L3
	different treatment unit operation		operation	PPT		Apply
CO5	Student should be able to manage	05	sewage	Lecture	Slip test	L5
	sewage effluent issue		effluent			
CO6	Student should be able identify waste	05	waste	Lecture	Assignment	L3
	streams		streams	and		
				Tutorial		
CO7	Student should be able to design	-	water	Lecture	Assignment	L5
	sewer with the help of flow of water		characteristi		and Slip	Evaluate
	characteristics		CS		Test	
CO8	Student should be able to design the	05	Industrial	Lecture	Assignment	L2
	industrial waste water treatment plant		waste water			
			treatment			
			plant			

COURSE PLAN - CAY 2019-20											
Student able to understand the	05	reuse and	Lecture	Assignment	L6						
qualities and properties of waste water		recycle.		_	Create						
Student should be able to understand	05	reuse and	Lecture	Assignment	L6						
type of treatment for disposal, reuse		recycle.			Create						
and recycle.											
Total	62	-	-	-	-						
	Student able to understand the qualities and properties of waste water Student should be able to understand type of treatment for disposal, reuse and recycle.	Student able to understand the qualities and properties of waste water05Student should be able to understand type of treatment for disposal, reuse and recycle.05	Student able to understand the qualities and properties of waste water05reuse and recycle.Student should be able to understand type of treatment for disposal, reuse 	Student able to understand the qualities and properties of waste water05reuse and recycle.LectureStudent should be able to understand type of treatment for disposal, reuse and recycle.05reuse and recycle.Lecture	COURSE PLAN - CAY 2019-20Student able to understand the qualities and properties of waste water05 recycle.reuse and recycle.Lecture AssignmentStudent should be able to understand type of treatment for disposal, reuse and recycle.05reuse and recycle.LectureAssignment						

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	Water treatment plant	CO1	L2
2	Waste water indistrial area	CO2	L2
3	sanitation and sewage network	CO3	L2
4	Waste water charactersticks	CO4	L3
5	Design of sewers	CO5	L2

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes					Progr								
#	COs	PO1	PO2	PO3	PO4	PO5	PO	PO7	PO	PO9	PO1	PO1	PO1	Level
							6		8		0	1	2	
15cv71pc.1	Student should be able understand drianage connection	1	-	-	-	-	-	-	-	-	-	-	-	L2
15cv71pc.2	Student should be able to understand sewerage network	-	2	-	-	-	-	-	-	-	-	-	-	L2
15cv71pc.3	Student should be able to understand conventional and biological treatment process	1	-	-	-	2	-		-		-	-	-	L2
15cv71pc.4	Student should be able to manage sewage effuent issue	-	-	-	-	-	-	2	-	-	-		-	L3
15cv71pc.5	Student should be able identify waste streams	-	-	-		2	-	-		-	-	-		L2
15cv71pc.6	Student should be able to design sewere with the help of flow of water characteristics	1	-	3	-	-	-		-	-	2	-	-	L2
15cv71pc.7	Student should be able to understand conventional and biological treatment process	1	-	-	-	2	-		-		-	-	-	L2
15cv71pc.8	Student should be able to manage sewage effuent issue	-	-	-	-	-	-	2	-	-	-		-	L3
15cv71pc.9	Student should be able identify waste streams	_	-	-		2	-	-		-	-	-		L2
15cv71pc.10	Student should be able to design sewere with the help of flow of water characteristics		-	3	-	-	-		-	-	2	-	-	L2
		1	2	3	-	2	-	2	-	-	2	-	_	

4. Mapping Justification

Mapping		Justification	Mapping		
СО	PO	Students should have the engineering knowledge on waste water	-		
		properties			
CO1	PO1	Students should conduct the experiments to give conclusion on	L1		
		waste water treatment			

			301102 12.2
		COURSE PLAN - CAY 2019-20	
CO2	PO2	Students having the engineering knowledge on types of stresses in	L3
		water	
CO4	PO5	deriving expression for characterstick for different waste water	L3
		cases	
CO6	PO1	Engineering knowledge on types sewer system	L3
CO5	PO2	Identify and analyse the biological treatment	L3
CO6	PO5	Students have the engineering knowledge self purification streams	L3
CO4	PO5	deriving expression for characterstick for different waste water	L3
		cases	
CO6	PO1	Engineering knowledge on types sewer system	L3
CO5	PO2	Identify and analyse the biological treatment	L3
CO6	PO5	Students have the engineering knowledge self purification streams	L3

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title Teaching No. of question in Exam						CO	Levels		
ule		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
#							Asg			
1	Sewer system	10	2	-	-	1	1	2	CO1	L3
2	Biological treatment process	10	2	-	-	1	1	2	CO2,	L4,l4
									CO3	
3	Industrial waste water treatment	10	-	2	-	1	1	2	CO4,	L4,l4
									CO5	
4	Selfpurification of streams	10	-	2	-	1	1	2	CO6	L4
5	Estimation of strom flow	10	-	-	4	1	1	2	CO7	L5
-	Total	50	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	15	CO1,CO2,CO3	L3,L4,L4
CIA Exam – 2	15	CO4,CO5, CO6,	L4,L4,L4
CIA Exam – 3	15	CO7	L5
Assignment - 1	05	CO1,CO2,CO3	L3,L4,L4
Assignment - 2	05	CO4,CO5, CO6,	L4,L4,L4
Assignment - 3	05	CO7	L5
Seminar - 1			
Seminar - 2			
Seminar - 3			
Other Activities – define –		CO1 to Co7	L2, L3, L4
Slip test			
Final CIA Marks	20	-	-

Note : Blooms Level in last column shall match with A.2 above.

D1. TEACHING PLAN - 1

	Μ	lod	lu	le	-	1	
--	---	-----	----	----	---	---	--

Title:	Divide and Conquer	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Students are able to find the properties of water by exploration of soil for construction of structures	CO1	L3
b	Course Schedule	-	-
lass No	Module Content Covered	СО	Level
1	Introduction,Objectives and Importance	C01	L2
2	Stages and Methods of exploration- Test pits, Borings, Geophysical methods	C01	L2
3	stabilization of boreholes	C01	L2
4	Sampling techniques	C01	L2
5	Undisturbed, disturbed and representative samples	C01	L2
6	Geophysical exploration and Bore hole log	C01	L2
7	Drainage methods	C01	L2
8	Dewatering methods	C01	L2
9	estimation of depth of GWT (Hvorslev's method).	C01	L3
10	estimation of depth of GWT (Hvorslev's method).	C01	 L3
C	Application Areas	CO	Level
1	Use to find soil properties	CO1	L2
2	Used to determine the depth of ground water table	CO1	 L3
-			
d	Review Questions	-	-
1	List and explain various types of samplers	CO1	L2
2	Explain seismic refraction method of soil exploration with neat sketch	CO1	L2
3	What are the objectives of subsurface exploration?	CO1	L2
4	Describe with neat sketch wash boring technique to explore the soil?	CO1	L2
5	Explain with neat sketch electrical resistivity method of soil exploration?	CO1	L2
6	List out the methods of dewatering. Explain any two method of dewatering with neat sketch	CO1	L2
7	Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects?	CO1	L2
8	List the methods used for controlling ground water during excavation and explain the electro — osmosis method.	CO1	L2
9	Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m.	CO1	L3
10	A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom of the borehole to a distance of 580mm with length of sample recorded being 520mm. find the recovery ratio.		L3
	Experiences		
<u>e</u>	Experiences	-	-
1		CO1	L2
2			
3		<u> </u>	
<u>4</u> 5		CO3	L3

Module – 2	\mathbb{N}	lod	lu	le	_	2
------------	--------------	-----	----	----	---	---

Title:	Divide and Conquer	Appr Time:	10 Hrs
a -	Course Outcomes The student should be able to:	-	Blooms Level
1	Students are able to analyse the distribution of stress in water under loading	CO3	L4
2	Students are able to analyse the settlement of foundation under loading in cohesive and cohesion-less soil	CO4	L3
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
17	Stress in soil Introduction	CO2	L2
18	Boussinesq's and Westergaard's theory - concentrated load, circular load	CO2	L2
19	rectangular load, equivalent point load method	CO2	L2
20	pressure distribution diagrams and contact pressure	CO2	L3
21	Newmark's chart.	CO3	L2
22	Foundation Settlement	CO3	L2
23	Approximate method for stress distribution on a horizontal plane	CO3	L3
24	Types of settlements and importance	CO3	L2
25	Computation of immediate and consolidation settlement	CO3	L4
26	Computation of immediate and consolidation settlement	CO3	L4
С	Application Areas	со	Level
1	Ability to draw stress disribution digram for a given load on soil	CO2	L3
2	Ability measure settlement beneath loaded footings on sand and clayey soil	CO3	L4
d	Review Questions	-	-
11	Explain with sketches various types of settlements. Comment on the sustainability of these types of settlements and functional utility of the structure	CO2	L2
12	List the components of settlement. Give expressions to calculate each one of them, clearly specifying what the notations stand for.	CO2	L2
13	Explain the basis of construction of New mark's chart and discuss how it is used.	CO2	L2
14	Define isobar. Construct an isobar for a vertical stress of 40kN/m2 when ground surface is subjected to a concentrated load of 1000kN.	CO2	L1,L3
15	A circular area on the ground surface 6m in diameter carries a uniformly distributed load of 150kN/m2 . Calculate the vertical stress at depths of 3m, 6m, 9m and 12m. Also plot the variation of stress with depth.	CO2	L3
16	Derive an expression for vertical pressure under a uniformly loaded circular area along vertical symmetrical axis.	CO2	L2
17	Explain a 2V:1H approximate method to determine stress at a depth Z below the footing of rectangular shape of size B x L.	CO2	L2
18	A structure is supported by ring foundation of outer inner diameters 8m and 5m respectively. If the foundation transmits contact pressure of 200kN/m2, compute the stress 3m below the center of the foundation.	CO3	L3
19	A footing of rectangular shape 6m x 8m is uniformly loaded with 180kN/m2 at the ground level. Newmark's chart of influence factor 0.004 is used to find the stress at a certain depth. It that found that 24 elements of the chart are covered by the loaded area. Determine the stress.	CO3	L3
20	A soft clay layer is 5m thick and lies under newly constructed building. The effective pressure due to overlying strata is 300kN/m and new construction increased the overburden by 120kN/m.If liquid limit is 80%, natural water content of the clay layer is 43% and G=2.70. Dry density of the clay is 18kN/m3.Compute the settlement.	CO3	L3,L4

	COURSE PLAIN - CAT		
е	Experiences	-	-
1		CO1	L2
2			
3			
4		CO3	L3
5			

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs C	Code	15CV71 S	em:	7	Marks:	30	Time: 7	5 minute	es	
Cour	rse:	Municipal and								
-	-	Note: Answe				ual marks.		Marks	CO	Level
1	а	List and expla						CO1	L2	07
	b	A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom of the borehole to a d istance of 580mm with length of sample recorded being 520mm. find the recovery ratio.						a s	L3	08
2	a Explain seismic refraction method of soil exploration with neat sketch							CO1	L2	07
	b	Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m.						L3	08	
3	а	Explain the b used.	asis of cor	struction o	f Newmark'	s chart and	discuss how it	s CO2	L2,L4	07
	b					4	L4	08		
4	а	Explain with	sketches	various typ	pes of sett	lements. Co	omment on th nal utility of th		L2	07
	b	The effective construction	e pressure increased content o	e due to o the overbu of the clay	verlying sti Irden by 12 layer is 43%	rata is 300ł 0kN/m.If liq	ructed building <n and="" m="" nev<br="">juid limit is 80%). Dry density (</n>	X 6,	L3	08

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions									
Crs C	Crs Code: 15CV71 Sem: 7 Marks: 5 / 10 Time:			90 - 120	0 – 120 minutes					
Cours	Course: Municipal and Industrial wastewater									
		Engineeri	ng							
Note:	Each	student t	o answer 2-3	assignment	ts. Each assig	gnment ca	rries equal ma	rk.		
SNo	SNo USN Assignment Description				Marks	СО	Level			
1	I 1KT15CV001 List and explain various types of samplers		5	CO1	L2					
2	2 1KT15CV004 Explain seismic refraction method of soil exploration with		n 5	CO1	L2					
	neat sketch									
3	1KT15	CV015	What are the	e objectives	of subsurfac	ce explorat	ion?	5	CO1	L2
4	1KT15	CV016	Describe wit	h neat sket	ch wash bo	ring techni	que to explore	9 5	CO1	L2
			the soil?							
5	1KT15	CV026	Explain with	neat sketc	h electrical	resistivity	method of so	l 5	CO1	L2
			exploration?							
6	1KT15	CV028	List out the r	nethods of	dewatering.	Explain an	y two method	5	CO1	L2

	1	COURSE PLAN - CAY 2019-20			
		of dewatering with neat sketch			
7	1KT16CV001	Indicate with neat sketches, selection of number and depth of boring for various civil engineering projects?	5	CO1	L2
8	1KT16CV002	List the methods used for controlling ground water during excavation and explain the electro — osmosis method.	5	CO1	L2
9	1KT16CV003	Estimate the ground water level by Hvorslev's method using the data given. Depth up to which water is bailed out is 30m, rise in water level after first day is 2.2m, second day 1.8m and on third day it is 1.5m.	5	CO1	L2
10	1KT16CV004	A sampling tube has inner diameter of 70mm and cutting edge of 68mm. its outside diameters are 72 mm and 74mm respectively. Determine area ratio, inside clearance, outside clearance of the sampler. This tube is pushed at the bottom of the borehole to a distance of 580mm with length of sample recorded being 520mm. find the recovery ratio.	5	CO1	L4
11	1KT16CV005	Explain with sketches various types of settlements. Comment on the sustainability of these types of settlements and functional utility of the structure	5	CO2	L2
12	1KT16CV006	List the components of settlement. Give expressions to calculate each one of them, clearly specifying what the notations stand for.	5	CO2	L2
13	1KT16CV007	Explain the basis of construction of Newmark's chart and discuss how it is used.	5	CO2	L2
14	1KT16CV008	Define isobar. Construct an isobar for a vertical stress of 40kN/m2 when ground surface is subjected to a concentrated load of 1000kN.	5	CO2	L1,L3
15	1KT16CV009	A circular area on the ground surface 6m in diameter carries a uniformly distributed load of 150kN/m2. Calculate the vertical stress at depths of 3m, 6m, 9m and 12m. Also plot the variation of stress with depth.	5	CO2	L3
16	1KT16CV011	Derive an expression for vertical pressure under a uniformly loaded circular area along vertical symmetrical axis.	5	CO2	L2
17	1KT16CV013	Explain a 2V:1H approximate method to determine stress at a depth Z below the footing of rectangular shape of size B x L.	5	CO2	L2
18	1KT16CV014	A structure is supported by ring foundation of outer inner diameters 8m and 5m respectively. If the foundation transmits contact pressure of 200kN/m2, compute the stress 3m below the center of the foundation.	5	CO3	L3
19	1KT16CV016	A footing of rectangular shape 6m x 8m is uniformly loaded with 180kN/m2 at the ground level. Newmark's chart of influence factor 0.004 is used to find the stress at a certain depth. It that found that 24 elements of the chart are covered by the loaded area. Determine the stress.	5	CO3	L3
20	1KT16CV017	A soft clay layer is 5m thick and lies under newly constructed building. The effective pressure due to overlying strata is 300kN/m and new construction increased the overburden by 120kN/m.If liquid limit is 80%, natural water content of the clay layer is 43% and G=2.70. Dry density of the clay is 18kN/m3.Compute the settlement.	5	CO3	L3.L4

D2. TEACHING PLAN - 2

Module – 3

[Title:	Divide and Conquer	Appr	16 Hrs
			Time:	

а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyse lateral earth pressure in soil at rest	CO4	L4
2	Analyse the factor of safety against failure of earth slope	CO5	L5
b	Course Schedule		
Class No	Module Content Covered	CO	Level
1	Active, Passive and earth pressure at rest	C04	L2
2	Rankine's theory for cohesionless soil	C04	L2
3	Rankine's theory for cohesive soil	C04	L2
4	Coulomb's theory	C04	L2
5	Rebhann's and Culmann's graphical construction.	C04	L3,L4
6	Assumptions,	C05	L2
7	infinite and finite slopes, factor of safety	C05	L2
8	use of Taylor's stability charts	C05	L2
9	Swedish slip circle method for C and C- ϕ (Method of slices) soils	C05	L3,L4
10	Fellineous method for critical slip circle	C05	L3,L4
С	Application Areas	СО	Level
1	Compute lateral earth pressure distribution behind earth retaining structures	CO4	L4
2	Ability to estimate factor of safety against failure of earth slopes	CO5	L4
d	Review Questions	-	-
1	Explain what is meant by active and passive states of plastic equilibrium with sketch.	CO4	L2
2	Derive an expression for factor of safety for infinite slope	CO4	L2
3	What are the causes of failure slopes	CO4	L2
4	Explain with neat sketches i) Active earth pressure ii) Passive earth pressure iii) earth pressure at rest.	CO4	L2
5	Explain Culmann's graphical method for finding out the active earth pressure.	CO5	L3
6	Define Rebhann's graphical method of finding active pressure on a retaining wall.	CO5	L5
7	whatare the assumption and limitations of Rankine and coulomb's earth pressure theories.	CO4	L2
8	Mention the different types of slopes and explain the various causes of slope failure.	CO5	L2
9	Explain method of slice to determine the factor of safety against failure of finite slope.	CO5	L2
10	Derive the equation for finite and Infinite Slopes.	CO5	L2
е	Experiences	_	-
1		CO1	L2
2			
3			1
4		CO3	L3
5		ŭ	Ĭ

Module – 4

Title:Divide and Conquer15CV71 / A

	COURSE PLAN - CAY 2019-20		
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Evaluate bearing capacity of shallow foundation by Terzaghis and B.I.S method		L5
b	Course Schedule		
	Module Content Covered	<u> </u>	Level
1	Types of foundations	CO6	L2
2	determination of bearing capacity by Terzaghi's	CO6	L3
3	determination of bearing capacity by BIS method	CO6	L3
4	Effect of water table	CO6	L2
5	Effect of eccentricity	CO6	L2
6	field methods	CO6	L2
7	plate load test	CO6	L2
8	SPT	CO6	L2
9	Proportioning of shallow foundations- isolated	CO6	L5
10	Proportioning of shallow foundations- combined footings	CO6	L5
С	Application Areas	CO	Level
1	Ability to determine bearing capacity of soil and achieve profiency in proportioning shallow isolated and combined footings for uniform bearing pressure	CO6	L5
d	Review Questions	-	-
1	Define ultimate and safe bearing capacity of soil.	CO6	L2
2	Give the Terzaghi's equation for bearing capacity of strip, square, circular and rectangular footing.	CO6	L2
3	Discuss the effect of ground water table on bearing capacity.	CO6	L2
4	Explain plate load test with neat sketches to determine bearing capacity soils.	CO6	L2
5	List the assumptions made in terzaghi's bearing capacity theory.	CO6	L2
6	What is standard penetration test? Explain.	CO6	L2
7	What are the corrections applied to observed N values.	CO6	L2
8	Discuss the proportioning of combined footing.	CO6	L2
е	Experiences	-	-
1		CO7	L2
2			
3			
4		CO8	L3
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Code	:15CV71	Sem:	7	Marks:	30	Time:	75 minute	S	
Cour	rse:	Municipa	l and Indust	trial wastewa	ater Engineer	ing				
-	-	Note: Ans	swer any 2	questions, e	ach carry ec	lual mark	S.	Marks	СО	Level
1	а	Explain v with skete		ant by active	and passive	states of	plastic equilibriu	ım 05	CO5	L2
	b	weight γ₌ the factor slip circle	=19kN/m . ⁻ r of safety a	The slope is along a slip o at Fellinious	1.5H: 1V an circle passing	d has 9m g through	and φ=20 and u height. Determi toe. The center ₌35 0 . Use meth	ne of	CO5	L3,L4
2	а	Derive an	Derive an expression for factor of safety for infinite slope							L2
	b						ckfill. The top 3m est has unit weig		CO5	L3

		COURSE PLAN - CAY 2019-20	-CV-3NI	1-P11501-	FU2-V2.2
		$\gamma\text{=}22kN/m$ 3 with $\phi\text{=}$ 22 0 . Determine the active earth $$ pressure on the wall and its position.			
3	а	Define i. Safe bearing capacity ii. Allowable bearing capacity	04	CO6	L2
	b	What will be the net safe bearing pressure of sand having ϕ =36 °, take effective unit weight of soil as 19kN/m ³ i. 1.2m wide strip footing ii. 1.2m wide square footing.	06	CO6	L3
	С	Write a note on how bearing capacity changes with respect to water table level.	05	CO6	L3
4	a	When there is need of combined footing, explain with sketches	05	CO6	L3
	b	Design a square footing to carry a safe load of 2400kN on a sandy soil at a depth of 1.5m below GL with factor of safety of 3. Given γ sat =21kN/m 3 with N c = 25, N q = 34 and N γ = 32. Permissible settlement is 40mm. water table may rise up to the base of the footing.		CO6	L4

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions										
	ode:	15CV71	Sem:	7		5 / 10	Time:	90 - 120	minute	S
Cours	se:	Municipa		Industrial	wastewater					
Noto	Fach	Enginee		2 accianmo	ents. Each assig					
SNo		USN			gnment Desc		ines equal ma	Marks	СО	Level
		5CV001	Explain Cul earth press	mann's grap	phical method		g out the activ		CO4	Level L2
2	1KT1ŧ	5CV004		nann's grap	hical method	of finding	active pressu	re 5	CO4	L2
3	3 1KT15CV015 what are the assumption and limitations of Rankine coulomb's earth pressure theories.							nd	CO4	L2
4	1KT1	5CV016	Mention the different types of slopes and explain the various 5 CO4 L causes of slope failure.							L2
5	1KT1	5CV026	Explain me against fail		ce to determ slope.	nine the f	actor of safe	ty	CO5	L3
6	1KT15	5CV028	Derive the e	equation for	finite and Infir	nite Slopes	ò.		CO5	L5
7	1KT16	5CV001	Define ultin	nate and sat	fe bearing cap	acitv of sc	oil.		CO4	L2
		6CV002	Give the T	erzaghi's e	quation for b ctangular footi	earing ca		p,	CO5	L2
9	1KT16	5CV003	Discuss the	effect of gr	ound water ta	ble on bea	aring capacity.		CO5	L2
10	1KT16	6CV004	Explain pla bearing ca		est with neat	sketches	to determin	ne	CO5	L2
11	1KT16	6CV005			made in ter	zaghi's be	earing capaci	ty	CO6	L2
12	1KT16	600V36		ndard pene	tration test? E>	plain.			CO6	L2
		5CV007			ns applied to c		Values.		CO6	L2
14	1KT16	6CV008			ng of combine				CO6	L2
15	1KT16	600V06	Write a not	e on standa	rd penetration	n test and i	ts corrections		CO6	L2
16	1KT16	6CV011		ing on the g propertie					CO6	L4

		BE	-7-CV-SK	11-Pn5b1-	+02-V2.2
		COURSE PLAN - CAY 2019-20			
		ii) Angle of internal friction 35°. Also calculate UBC of same			
		footing when it is placed at depth of Im below the ground			
		surface. Take Nq = 41.4 ,			
		N, = 42.2.			
17	1KT16CV013	Discuss effect of water table on bearing capacity of soil.		CO6	L2
18		A square footing placed at a depth of 1m is required to carry a		CO6	L4
		load of 1000kN. Find the required size of footing given the			
		following data :			
		C = 10kN/m2 , \emptyset = 38° , y = 19kN/m3. For \emptyset = 38°.			
		Terzaghi's bearing capacity factors are $N_c = 61.35$, $N_2 = 48.93$,			
		N_y = 74.03. Assume water table is at base of footing.			
19		A circular footing rests on a pure clay with qu = 270 kN/m² at a		CO6	L4
		depth of 1.8m. Determine the diameter of the footing if it has to			
		transmit a load of 720 kN. Assume the bulk unit weight of soil			
		as 181(N/m3 and the factor of safety as 3.			
	1KT17CV416				

D3. TEACHING PLAN - 3

Module – 5

Title:	Divide and Conquer	Appr Time:	16 Hrs
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyse the capacity and efficiency of single and group of piles in cohesive and cohesion-less soil		L4
b	Course Schedule		
	D Module Content Covered	<u> </u>	Level
1	Types and classification of piles	C07	L2
2	single loaded pile capacity in cohesion-less soils by static formula	C07	L2
3	single loaded pile capacity in cohesive soils by static formula	CO7	L2
4	efficiency of file group	CO7	L4
5	group capacity of piles in cohesion-less soils	CO7	L3
6	group capacity of piles in cohesive soils	CO7	L3
7	negative skin friction	CO7	L2
8	pile load tests	CO7	L2
9	Settlement of piles	CO7	L2
10	under reamed piles (only introductory concepts – no derivation)	CO7	L2
С	Application Areas	CO	Level
1	Capability of estimating load carrying capacity of single and group of piles	CO7	L4
d	Review Questions	_	-
1	Classify the pile foundation and explain briefly.	CO7	L2
2	Explain Static formula for the design of piles.	CO7	L2
3	With a neat sketch, explain undereamed piles.	CO7	L2
4	With a neat sketch, Explain Pile load test.	CO7	L2
5	What is meant by Efficiency of piles. Explain felds rule.	CO7	L2
6	Explain Settlement of piles in cohesive and cohesionless soil.	CO7	L2
7	Write a note on classification of piles	CO7	L2
8	Explain negative skin friction in pile foundation	CO7	L2
9	Design a friction pile group to carry a load of 3000 kn including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure.	CO7	L4

	COURSE PLAN - CAY 2019-20	-07-2611-611	501-F02-V2.2
10	A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile.		L4
11	Explain the factors influencing the selection of depth of foundation.	CO7	L4
	A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile.		L4
е	Experiences	-	-
1		CO10	L2
2			
3			
4		CO9	L3
5			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	Code:	15CV71	Sem:	7	Marks:	30	Time: 7	′5 minute	S				
Cour	se:	Municipal	and Industri	al wastewate	er Engineerir	ng							
-	-			uestions, ea		ıal marks.		Marks	со	Level			
1	а	Write a no	ote on classi	fication of pil	les			04	CO7	L2			
	b			ciency of pile	-			05	CO7	L2			
		extending of the pile If the pile pile group Neglect b	roup of nine piles with three piles in a row was driven into soft clay 06 CO7 L4 ending from ground level to a great depth. The diameter and length s in e piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. In e piles were spaced at 90cm c/c, compare the bearing load on the group on the basis of shear failure criterion for a factor of safety of 2.5. In the tip of the piles. Take m=0.6 for shear mobilization and each pile.										
2	а	Explain st	atic formula	for the desig	gn of piles			04	CO7	L2			
				gement of u and spacing.		ed pile with	n proportion	of 06	CO7	L2			
	С	Write a no	ote on pile la	oad test				05	CO7	L2			
3	а	Classify th	ne various ty	pe of Piles ba	ased on mat	erial and fur	nction.	08	CO7	L2			
	b	Explain ne	egative skin f	riction in pile	e foundation			07	CO7	L2			
4	а	Explain de	etermination	of the pile lo	bad capacity	in detail.		07	CO7	L2			
		weight of 20m, unde clay is 70 and norm	the pile cap erlain by roc kN/m2. The	at a site whe k. Average u e clay may k with liquid	ere the soil i inconfined c be assumed	s uniform cla compressive to be of no	n including th ay to a depth strength of th ormal sensitivi safety of 3	of 1e ty	CO7	L4			

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs C	ode:	15CV71	Sem:	7	Marks:	5 / 10	Time:	90 – 120 minutes		S	
Course: Municipal and Industrial wastewater											
	Engineering										
Note:	Each	student	to answer 2	2-3 assignme	nts. Each assig	gnment c	arries equal ma	ark.			
SNo		USN		Assi	gnment Desc	ription		Marks	CO	Level	
1	1KT15	;CV001	Classify the	assify the pile foundation and explain briefly.					CO7	L2	
15CV71 / A Copyright ©2018. cAAS. All rights reser						served.					
					Dere Har (a	-					

3 1KT15CV015 With a neat sketch. explain PIle load test. 5 CO7 L2 4 1KT15CV015 With a neat sketch. Explain PIle load test. 5 CO7 L2 5 1KT15CV026 What is meant by Efficiency of piles. Explain felds rule. 5 CO7 L2 6 1KT15CV028 Explain Settlement of piles in cohesive and cohesionless soil. 5 CO7 L2 7 1KT16CV001 Write a note on classification of piles 5 CO7 L2 8 1KT16CV002 Explain negative skin friction in pile foundation 5 CO7 L2 9 1KT16CV003 Design a friction pile group to carry a load of 3000 kn including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure. 5 CO7 L4 10 1KT16CV004 A group of nine piles with three piles in a row was driven into 5 CO7 L4 11 1KT16CV005 Explain the factors influencing the selection of depth of for shear mobilization around each pile. 5 CO7 L4			COURSE PLAN - CAY 2019-20			
4 1KT15CV016 With a neat sketch. Explain Pile load test 5 CO7 L2 5 1KT15CV026 What is meant by Efficiency of piles. Explain fetds rule. 5 CO7 L2 7 1KT15CV026 Explain Settlement of piles in cohesive and cohesionless soil. 5 CO7 L2 7 1KT16CV001 Write a note on classification of piles 5 CO7 L2 8 1KT16CV002 Explain negative skin friction in pile foundation 5 CO7 L2 9 1KT16CV003 Design a friction pile group to carry a load of 3000 km including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure. 5 CO7 L4 10 1KT16CV004 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile foundation. 5 CO7 L4 11 1KT16CV005 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to	2		Explain Static formula for the design of piles.	5	CO7	L2
5 1KT15CV026 What is meant by Efficiency of piles. Explain felds rule. 5 CO7 L2 6 1KT15CV028 Explain Settlement of piles in cohesive and cohesionless soil. 5 CO7 L2 7 1KT16CV002 Explain negative skin friction in pile foundation 5 CO7 L2 9 1KT16CV003 Design a friction pile group to carry a load of 300 kn including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure. 5 CO7 L4 10 1KT16CV004 A group of nine piles with three piles in a row was driven into stock ay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35KN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m-06 For CO7 L4 11 1KT16CV005 Explain the factors influencing the selection of depth of foundation. 5 CO7 L4 12 1KT16CV006 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s	3			5		L2
6 1KT15CV028 Explain Settlement of piles in cohesive and cohesionless soil. 5 C07 L2 7 1KT16CV001 Write a note on classification of piles 5 C07 L2 8 1KT16CV002 Explain negative skin friction in pile foundation 5 C07 L2 9 1KT16CV003 Design a friction pile group to carry a load of 3000 kn including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kN/mz. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure. 5 C07 L4 10 1KT16CV004 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C - 35kN/mz. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m-0.6 for shear mobilization around each pile. 5 C07 L4 12 1KT16CV006 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C - 35kN/mz. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basi	4			5	CO7	L2
7 1KT16CV001 Write a note on classification of piles 5 CO7 L2 8 1KT16CV002 Explain negative skin friction in pile foundation 5 CO7 L2 9 1KT16CV002 Explain negative skin friction pile group to carry a load of 3000 kn 5 CO7 L4 9 1KT16CV003 Design a friction pile group to carry a load of 3000 kn 5 CO7 L4 10 1KT16CV004 A group of nine piles with the pile cap at a site where the soil is uniform clay be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure. 5 CO7 L4 10 1KT16CV004 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles mare and and 10m respectively. The cohesion C - 35KN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m-0.6 for shear mobilization around each pile. 5 CO7 L4 12 1KT16CV006 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of sa	5			5	,	
8 IKT16CV002 Explain negative skin friction in pile foundation 5 CO7 L2 9 IKT16CV003 Design a friction pile group to carry a load of 3000 kn including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure. 5 CO7 L4 10 IKT16CV004 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c. compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile. 5 CO7 L4 11 1KT16CV006 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles mare 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were socre and 10m respectively. The cohesion C = 35kN/m2. If the piles were soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compa	6			5	CO7	L2
9 1KT16CV003 Design a friction pile group to carry a load of 3000 kn including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kNV/m2. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure. 5 CO7 L4 10 1KT16CV004 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile. 5 CO7 L4 11 1KT16CV006 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles. Take m=0.6 for shear mobilization around each pile. 5 CO7 L4 12 1KT16CV006 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization arou	7			5	CO7	L2
including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure. 10 1KT16CV004 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 5 CO7 L4 11 1KT16CV005 Explain the factors influencing the selection of depth of foundation. 5 CO7 L4 12 1KT16CV006 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 5 CO7 L4 13 1KT16CV007 5 13 1KT16CV003 5 <	8			5	CO7	L2
soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile. 11 1KT16CV005 Explain the factors influencing the selection of depth of 5 foundation. CO7 L4 12 1KT16CV006 A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile. 5 CO7 L4 13 1KT16CV007 5 CO7 L4 13 1KT16CV008 5 1 1 14 1KT16CV003 5 1 1 15 1KT16CV004 5 1 1 16 1KT16CV01 5 1 1 17 1KT16CV013 1 1 1 18 1KT16CV016 1 1 1	9	1KT16CV003	including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required	5	CO7	L4
foundation.Image: constraint of the second seco	10	1KT16CV004	soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6	5	CO7	L4
soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile.131KT16CV0075141KT16CV0081151KT16CV0091161KT16CV0111171KT16CV0131181KT16CV0141191KT16CV0161	11	1KT16CV005		5	CO7	L4
14 1KT16CV008 1 15 1KT16CV009 1 16 1KT16CV011 1 17 1KT16CV013 1 18 1KT16CV014 1 19 1KT16CV016 1	12	1KT16CV006	soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6	5	CO7	L4
15 1KT16CV009 16 1KT16CV011 17 1KT16CV013 18 1KT16CV014 19 1KT16CV016	13	1KT16CV007		5		
16 1KT16CV011 17 1KT16CV013 18 1KT16CV014 19 1KT16CV016	14	1KT16CV008				
17 1KT16CV013	15	1KT16CV009				
18 1KT16CV014 19 1KT16CV016						
19 1KT16CV016	17	1KT16CV013				
	18	1KT16CV014				
	19	1KT16CV016				
20 IN110CV01/	20	1KT16CV017				

F. EXAM PREPARATION

1. University Model Question Paper

Cou	rse:	Municipal a	and Industrial v	wastewate	er Engineering		Month J	/ Year	May /2019	
Crs	Code:	15CV71	Sem:	7	7rks:	100	Time:		180 mi	inutes
-	Note	Answer all	FIVE full ques	tions. All c	questions carry eq	ual marks		Marks	CO	Level
1	a	Discuss ab	out the impor	tance of s	sub — soil explora	tion progra	am.	04	CO1	L2
	b	Explain the	method of se	ismic refra	action.			06	CO1	L2
	С	What are th	ne methods av	/ailable fo	r dewatering? Exp	olain any o	ne method.	06	CO1	L2
-	a	Explain the	plain the wash boring method, with the help of a neat sketch.							L2
	b	stablish the location of ground water in a clayey strata, water in bore was						6 08	CO1	L3
		bailed out								
					4.0cm , h2 = 57.9cr	-	-			
2	a	Derive the	expressions	for vertic	cal stress and s	hear stres	s by using	06	C02	L2
		Boussinesc	q's theory. Also	o compare	e this theory with \	Westergaa	rd's theory.			
	b	Write a not	rite a note on pressure distribution diagrams.							L2
	С	A load of	1000KN acts	as a poir	nt load at the su	irface of a	a soil mass	. 06	C02	L3
		Estimate th	ne stress at a	point 3m	below and 4m av	way from	the point of	f		

		COURSE PLAN - CAY 2019-20 action of the load of Boussinesg's formula. Compare the value with the		-Pn5b1-F	
		result from Westergaard's theory.			
		OR			
-	a	Explain with sketches various types of settlements. Comment on the sustainability of these types of settlements and functional utility of the structure.	08	CO3	L2
	b	A soft clay layer is 5m thick and lies under newly constructed building. The effective pressure due to overlying strata is 300kN/m ² and new construction increased the overburden by 120kN/m ² . If liquid limit is 80%, natural water content of the clay layer is 43% and G=2.70. Dry density of the clay is 18kN/m ³ . Compute the settlement.	08	CO3	L3
3	а	Define At rest, Active and Passive Earth pressures.	04	CO4	L2
	b	Explain Rankine's theory for calculating Active pressure in cohesion less soils for no surcharge.	05	CO4	L2
	С	With neat sketch, explain Rebhann's graphical method of finding active earth pressure on a retaining wall	07	CO4	L4
-	а	Explain the causes for a slope failure and list the types of slope failures.	05	CO5	L2
	b	Explain Swedish method of slices of stability analysis of slopes.	05	CO5	L2
	С	c. A 5m deep canal has side slopes of 1:1. The properties of soil are Cu = 20kN/m2, \mathcal{O} = 10°, e = 0.8 and G = 2.8. If Taylor's stability number is 0.108, determine the factor of safety with respect to cohesion when the canal runs full. Also fmd the factor of safety in case of sudden draw down, if the Taylor's stability number for this condition is 0.137.	06	CO5	L4
4	а	Define : i) Ultimate bearing capacity ii) Safe bearing capacity.	04	CO6	L2
	b	Discuss effect of water table on bearing capacity of soil.	06	CO6	L2
	С	A square footing placed at a depth of 1m is required to carry a load of 1000kN. Find the required size of footing given the following data : C = 10kN/m2, $\mathcal{A} = 38^{\circ}$, y = 19kN/m3. For $\mathcal{A} = 38^{\circ}$. Terzaghi's bearing capacity factors are N _c = 61.35, N2 = 48.93, N _y = 74.03. Assume water table is at base of footing.	06	CO6	L4
-	а	Discuss the proportioning of combined footings.	04	CO6	L5
	b	Explain the following : i) Corrections to SPT 'N' value. ii) Use of plate load test results to calculate bearing capacity of soils.	06	CO6	L2
	С	A circular footing rests on a pure clay with qu = 270 kN/m ² at a depth of 1.8m. Determine the diameter of the footing if it has to transmit a load of 720 kN. Assume the bulk unit weight of soil as 181(N/m3 and the factor of safety as 3.	06	CO6	L4
5	а	Mention the situations where pile foundation is necessary and explain the classification of piles.	08	CO7	L2
	b	Design a friction pile group to carry a load of 3000 kn including the weight of the pile cap at a site where the soil is uniform clay to a depth of 20m, underlain by rock. Average unconfined compressive strength of the clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity and normally loaded with liquid limit 60%. A factor of safety of 3 is required against shear failure.	08	CO7	L4
-	а	Explain determination of the pile load capacity in detail.	05	CO7	L2
	b	Explain the factors influencing the selection of depth of foundation.	05	CO7	L2
	С	A group of nine piles with three piles in a row was driven into soft clay extending from ground level to a great depth. The diameter and length s of the piles were 30cm and 10m respectively. The cohesion C = 35kN/m2. If the piles were spaced at 90cm c/c, compare the bearing load on the pile group on the basis of shear failure criterion for a factor of safety of 2.5. Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization around each pile.	06	CO7	L4

2. SEE Important Questions

Course: Municipal and Industrial wastewater Engineering

Copyright ©2018. cAAS. All rights reserved.

	<u> </u>	COURSE PLAN - CAY 2019-20		. 0	
Crs (-	15cv71 Sem: 7 Marks: 100 Time:		180 m	inutes
		Answer all FIVE full questions. All questions carry equal marks.	-	-	×
Mo	Qno.	Important Question	Marks	со	Year
dul					
e		V/hat is subsurface surlaration?)V/hat are the shipetiuss of sail	06	<u> </u>	0.045
1	1	What is subsurface exploration? What are the objectives of soil exploration?	06	CO1	2015
	2	Explain the method of seismic refraction.	07	CO1	2015
	2	What are the methods available for dewatering?explain any one method	07	CO1	2015
	3	Explain briefly stabilization of bore holes.	07 06	CO1	2015 2016
	4	Estimate the position of the ground water table from the following data	00	CO1	2010
	5	obtained from the field. Depth upto which water is boiled out is 30m.	08	COI	201/
		Raise in water levels : on first day 2.2m, second day 1.8m and third day			
		1.5m.			
	6	A sampling tube has inner diameter of 70mm and cutting edge of 68mm.		CO1	2017
		its outside diameters are 72 mm and 74mm respectively. Determine area		001	
		ratio, inside clearance, outside clearance of the sampler. This tube is			
		pushed at the bottom of the borehole to a distance of 580mm with length			
		of sample recorded being 520mm. find the recovery ratio.			
2	1	Write a note on pressure distribution diagrams.	06	CO2	201
	2	Derive the expressions for vertical stress and shear stress by using	08	CO2	201
		Boussinesq's theory. Also compare this theory with Weste rgaard's theory			
	3	A load of 1000KN acts as a point load at the surface of a soil mass.	06	CO2	201
		Estimate the stress at a point 3m below and 4m away from the point of			
		action of the load of Boussinesq's formula. Compare the value with the			
		result from Westergaard's theory			
	4	Write a note on settlement of footings.	08	CO3	201
	5	A saturated clay 8m thick underlies a proposed new building. The existing	08	CO3	201
		overburden pressure at the centre of clay layer is 300KPa and load due to			
		a new building increase the pressure by 200KPa. The liquid limit of the			
		soil is 75%. Water content of soil is 50%. GS — 2.7. Estimate consolidation			
		settlement.			
	6	Discuss the proportion of isolated footing.	06	CO3	2016
	7	Explain construction and uses of Newmarks chart.	06	CO2	2016
3	1	Define At rest, Active and Passive Earth pressures.	06	CO4	201
•	2	Explain Rankine's theory for calculating Active pressure in cohesion less	06	CO4	201
		soils for no surcharge.		•	
	3	A soft clay layer is 5m thick and lies under newly constructed building.	08	CO4	2016
		The effective pressure due to overlying strata is 300kN/m and new		•	
		construction increased the overburden by 120kN/m.lf liquid limit is 80%,			
		natural water content of the clay layer is 43% and G=2.70. Dry density of			
		the clay is 18kN/m3.Compute the settlement.			
	4	What are the causes for failure of slopes?	06	CO5	2016
	5	Discuss the Swedish method of slices for a cohesive frictional soil.	08	CO5	201
	6	An embankment is inclines at an angle of 35° and its height is 15m. the	06	CO5	2017
		angle of shearing resistance is 15° and the cohesion intercept is			
		200KN/m2 . The unit weight of soil is 18.0KN/m3. If Taylor's stability			
		number is 0.06, find the factor of safety with respect to cohesion.			
4	1	Define safe bearing capacity, safe bearing pressure and allowable bearing	06	CO6	201
		pressure.			
	2	Write a note on standard penetration test and its corrections.	08	CO6	201
_	3	Calculate the ultimate bearing capacity of a 2m wide square footing	06	CO6	201
		resting on the ground surface of a sand deposit with the following			
		properties :			
		i) Unit weight 18.6 KN/m3			
		ii) Angle of internal friction 35°. Also calculate UBC of same footing when it			
		is placed at depth of Im below the ground surface. Take Nq = 41.4 ,			
		N, = 42.2.			
	4	Discuss effect of water table on bearing capacity of soil.	06	CO6	2016
	5	A square footing placed at a depth of 1m is required to carry a load of	08	CO6	201

		COURSE PLAN - CAY 2019-20			
		1000kN. Find the required size of footing given the following data :			
		C = 10kN/m2 , \emptyset = 38° , y = 19kN/m3. For \emptyset = 38°. Terzaghi's			
		bearing capacity factors are N_c = 61.35 , N2 = 48.93 , N_y = 74.03. Assume			
		water table is at base of footing.			
	6	A circular footing rests on a pure clay with $qu = 270 \text{ kN/m}^2$ at a depth of	08	CO6	2017
		1.8m. Determine the diameter of the footing if it has to transmit a load of			
		720 kN. Assume the bulk unit weight of soil as 181(N/m3 and the factor of			
		safety as 3.			
5	1	Explain the factors affecting the choice of foundation.	06	CO7	2015
	2	Write a note on classification of pile foundations.	08	CO7	2015
	3	Explain negative skin friction in pile foundation	06	CO7	206
	4	Explain determination of the pile load capacity in detail.	06	CO7	2016
	5	Design a friction pile group to carry a load of 3000 kn including the	08	CO7	2017
		weight of the pile cap at a site where the soil is uniform clay to a depth of			
		20m, underlain by rock. Average unconfined compressive strength of the			
		clay is 70 kN/m2. The clay may be assumed to be of normal sensitivity			
		and normally loaded with liquid limit 60%. A factor of safety of 3 is			
		required against shear failure.			
	6	A group of nine piles with three piles in a row was driven into soft clay	06	CO7	2017
		extending from ground level to a great depth. The diameter and length s			
		of the piles were 30cm and 10m respectively. The cohesion C = 35 kN/m2.			
		If the piles were spaced at 90cm c/c, compare the bearing load on the			
		pile group on the basis of shear failure criterion for a factor of safety of 2.5.			
		Neglect bearing at the tip of the piles. Take m=0.6 for shear mobilization			
		around each pile.			

G. Content to Course Outcomes

1. TLPA Parameters

Table 1: TLPA – Example Course

Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructi	Assessment
(Split module content into 2 parts which have	Teachin	Learning	Bloo	Action	on	Methods to
similar concepts)					Methods	Measure
		for	Level	Learning	for	Learning
		Content			Learning	
В	С	D	Ε	F	G	Н
Introduction, need for sanitation, methods	5	- L1	L2	-	-	- Slip Test
of sewage disposal, types of sewerage		- L2			Lecture	-
systems, dry weather flow, wet weather				disposal	-	-
flow, factors effecting dry and wet weather				-	-	
flow on design of sewerage system,				sewerag		
estimation of storm flow, time of				е		
concentration flow, material of sewers,				systems		
shape of sewers, laying and testing of						
low-cost waste treatment; oxidation pond,	5	- L3	L4	- Sewer	-	-
septic tank, Sewer appurtenances,		- L4		appurten	Lecture	Assignment
manholes, catch basins, basic principles of				ances	- Tutorial	-
house drainage, typical layout plan showing				- house	-	-
				drainage		
Design of sewers, hydraulic formula for	5	- L2	L3	-Design	-	-
velocity, effects of variation on velocity,		- L3			Lecture	Assignment
				sewers	-	-
				-		
and partial flow conditions,						
•	5	- L2	L2	-	-	- Slip Test
-	-	- L2		sewage	Lecture	-
					-	
l S				-		
	(Split module content into 2 parts which have similar concepts) Introduction, need for sanitation, methods of sewage disposal, types of sewerage systems, dry weather flow, wet weather flow, factors effecting dry and wet weather flow on design of sewerage system, estimation of storm flow, time of concentration flow, material of sewers, shape of sewers, laying and testing of sewers, ventilation of sewers. Iow-cost waste treatment; oxidation pond, septic tank, Sewer appurtenances, manholes, catch basins, basic principles of house drainage connections Design of sewers, hydraulic formula for velocity, effects of variation on velocity, regime velocity, design of hydraulic elements for circular sewers for full flow and partial flow conditions, disposal of effluents by dilution, self purification phenomenon, oxygen sag curve, zones of purification, sewage	(Split module content into 2 parts which have similar concepts)Teachin g HoursBCIntroduction, need for sanitation, methods of sewage disposal, types of sewerage systems, dry weather flow, wet weather flow, factors effecting dry and wet weather flow on design of sewerage system, estimation of storm flow, time of concentration flow, material of sewers, shape of sewers, laying and testing of sewers, ventilation of sewers. low-cost waste treatment; oxidation pond, septic tank, Sewer appurtenances, manholes, catch basins, basic principles of house drainage connections5Design of sewers, hydraulic formula for velocity, effects of variation on velocity, regime velocity, design of hydraulic elements for circular sewers for full flow and partial flow conditions, disposal of effluents by dilution, self purification phenomenon, oxygen sag curve, zones of purification, sewage5	(Split module content into 2 parts which have similar concepts)Teachin g HoursLearning Levels for ContentBCDIntroduction, need for sanitation, methods of sewage disposal, types of sewerage systems, dry weather flow, wet weather flow on design of sewerage system, estimation of storm flow, time of concentration flow, material of sewers, shape of sewers, laying and testing of sewers, ventilation of sewers.5- L1 - L2low-cost waste treatment; oxidation pond, septic tank, Sewer appurtenances, manholes, catch basins, basic principles of house drainage connections5- L3 - L4Design of sewers, hydraulic formula for velocity, effects of variation on velocity, regime velocity, design of hydraulic elements for circular sewers for full flow and partial flow conditions, disposal of effluents by dilution, self purification phenomenon, oxygen sag curve, zones of purification, sewage5- L2	(Split module content into 2 parts which have similar concepts)Teachin g HoursLearning BBloo ms' Level for ContentBCDEIntroduction, need for sanitation, methods of sewage disposal, types of sewerage systems, dry weather flow, wet weather flow, factors effecting dry and wet weather flow on design of sewerage system, estimation of storm flow, time of concentration flow, material of sewers, shape of sewers, laying and testing of sewers, ventilation of sewers.5- L1L2low-cost waste treatment; oxidation pond, septic tank, Sewer appurtenances, manholes, catch basins, basic principles of house drainage connections5- L3L4Design of sewers, hydraulic formula for velocity, effects of variation on velocity, regime velocity, design of hydraulic elements for circular sewers for full flow and partial flow conditions, disposal of effluents by dilution, self purification phenomenon, oxygen sag curve, zones of purification, sewage5- L2L2	(Split module content into 2 parts which have similar concepts)Teachin g HoursLearning Levels for ContentBloo Nerbs for LevelAction Verbs for LevelBCDEFIntroduction, need for sanitation, methods of sewage disposal, types of sewerage systems, dry weather flow, wet weather flow on design of sewerage system, estimation of storm flow, time of concentration flow, material of sewers, shape of sewers, laying and testing of severs, ventilation of sewers.5- L1L2-low-cost waste treatment; oxidation pond, septic tank, Sewer appurtenances, nouse drainage, typical layout plan showing house drainage connections5- L3L4- Sewer appurten ances - house drainageDesign of sewers, hydraulic formula for velocity, effects of variation on velocity, regime velocity, design of hydraulic elements for circular sewers for full flow and partial flow conditions,5- L2L3-Design of sewers - L2disposal of effluents by dilution, self purification phenomenon, oxygen sag curve, zones of purification, sewage5- L2L2-	(Split module content into 2 parts which have similar concepts)Teachin g HoursLearning LevelsBloo ms'Action Verbs for Level Learningon Verbs for Level LearningBCDEFGIntroduction, need for sanitation, methods of sewage disposal, types of sewerage systems, dry weather flow, wet weather flow on design of sewerage system, estimation of storm flow, time of concentration flow, material of sewers, shape of sewers, laying and testing of severs, ventilation of sewers.5- L1L2-low-cost waste treatment; oxidation pond, septic tank, Sewer appurtenances, manholes, catch basins, basic principles of house drainage connections5- L2L4- Sewer appurten ances - L4- Sewer appurten - Tutorial - L2Design of sewers, hydraulic formula for velocity, effects of variation on velocity, regime velocity, design of hydraulic elements for circular sewers for full flow and partial flow conditions, disposal of effluents by dilution, self purification, sewage- L2L2-disposal of effluents by dilution, sewage curve, zones of purification, sewage5- L2L2

		~ · · · /	
COURSE	PLAN -	CAY	2019-20

	COURSE PL	AN - CAY 2	2019-20		1	1	,
	problems on disposal of effluents, Streeter- Phelps equation				Streeter- Phelps equation		
	Waste water characteristics, sampling, significance and techniques, physical, chemical and biological characteristics, flow diagram for municipal waste water treatment, unit operations;	5	- L1 - L3	L3	characte ristics -	- Lecture -	- Slip Test -
3	screens, grit chambers, skimming tanks, equalization tanks Suspended growth and fixed film bio process, design of trickling filters, activated sludge process, sequential batch reactors, moving bed bio reactors, sludge digesters		- L3 - L2	L3	- design of trickling filters -sludge digester s	- Lecture - Tutorial -	- Assignment - -
	Difference between domestic and industrial waste water, effect of effluent discharge on streams, methods of industrial waste water treatment; volume reduction, strength reduction,		- L3 - L1	L3	-sewage disposal -	- Lecture - Tutorial -	- Assignment - -
4	neutralization, equalisation and proportioning. Removal of organic, inorganic and colloidal solids, combined treatment methods;merits, demerits and feasibility, principles of discharge of raw, partially treated and completely treated wastes in to streams		- L2 - L4	L4	-sewage discharg e -waste water treatmen t methods	- Lecture - Tutorial -	- Assignment - -
	Process flow chart, sources and characteristics of industrial waste water, treatment methods, reuse and recovery and disposal;	-	- L2 - L2	L2	- reuse and recovery and disposal -	- Lecture - -	- Assignment - -
5	cotton and textile industry, tanning industry, cane sugar and distilleries, dairy industry, steel and cement industry, paper and pulp industry, pharmaceutical and food processing industry		- L2 - L2	L2	- paper and pulp industry - pharmac eutical and food processi ng industry	- Lecture - -	- Assignment - -

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Мо	Learning or	Identified	Final Concept	Concept	CO Components	Course Outcome
dul	Outcome	Concepts		Justification	(1.Action Verb,	
e-	from study of	from		(What all Learning	2.Knowledge,	
#	the Content	Content		Happened from the	3.Condition /	Student Should be
	or Syllabus			study of Content /	Methodology,	able to
				Syllabus. A short	4.Benchmark)	
				word for learning or		
				outcome)		
A	1	J	K	L	М	N

			CC			7-CV-SKIT-Ph5b1-F02-V2.2
			sewer appurtenanc es	DURSE PLAN - CAY 2019-7 Design of sewerage systems . sewer appurtenances		Student should be able understand Drainage connection
	biological			Design of different unit operations	- admixtures -understand sewerage network	Student should be able to understand sewerage network
	design different	sewage	Waste water characteristi cs	Waste water characteristics		Student should be able to understand conventional and biological treatment process
2	manage sewage effluent issue	should be able identify		conventional and biological treatment process	- Understand - treatment unit operation -	Student should be able design different treatment unit operation
	Student should be able identify waste streams	design sewer		Industrial effluent treatment process	- Understand - sewage effluent 	Student should be able to manage sewage effluent issue
		industrial waste water	identify waste streams	water characteristics	- Apply strength of concrete - identify waste streams -	Student should be able identify waste streams
	industrial waste water treatment plant		characteristic swater characteristic s	qualities and properties of waste water	- Apply - water characteristics	Student should be able to design sewer with the help of flow of water characteristics
	and properties of waste water	understan d type of		water characteristics	- Understand - waste water treatment	Student should be able to design the industrial waste water treatment plant
	able to understand type of treatment for disposal,	Sewage disposal,		properties of waste water		Student able to understand the qualities and properties of waste water
	properties of	understan d type of	Special	Sewage disposal,	- Understand - recycle and reuse	Student should be able to understand type of treatment for disposal,